Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii
نویسندگان
چکیده
Hawaiian tropical dry forests are a unique and highly endangered ecosystem. Remaining fragments are heavily impacted by invasive plant species, particularly the perennial bunchgrass Pennisetum setaceum (Forssk.) Chiov. (fountain grass). Little is known about the impact of invasive species on carbon cycling in terrestrial ecosystems. Biomass estimates are a critical first step in understanding the effects of invasive species on carbon dynamics. Biomass data can be used to quantify carbon pools and fluxes, as well as the impacts of land cover change on carbon sequestration. The objectives of our work were to compare: (1) population structure of the dominant native tree species and (2) carbon pools in aboveground live biomass among three land cover types: native—native dominated, largely intact dry forest; invaded—intact overstory, but understory heavily invaded by P. setaceum; and converted—a formerly forested site that has been converted to grassland dominated by P. setaceum. Invasion of Hawaiian tropical dry forest by P. setaceum leads to an unsustainable population of native trees characterized by a conspicuous absence of saplings and smaller diameter individuals. Aboveground tree biomass did not differ between native (108.1 Mg ha ) and invaded (107.0 Mg ha ) forests due to the preponderance of wood biomass in large Diospyros sandwicensis trees at both sites. Grass invaded forest had 7 more understory biomass than the native forest, but no differences were observed in total aboveground live biomass (tree + understory) between native (108.9 Mg ha ) and invaded forests (112.1 Mg ha ). However, total aboveground live biomass was 93% lower at the converted site (7.8 Mg ha ), which is the eventual fate of invaded forests with no natural regeneration of native canopy species. Native forests contained significantly more individuals and leaf biomass for the mid-canopy tree Psydrax odorata, which increased overall stand leaf area index. This structural difference appears to have prevented P. setaceum from invading the native site by reducing understory light levels. These results indicate that large changes in the sequestration of carbon in aboveground biomass have occurred across the landscape following widespread grass invasion and conversion of Hawaiian dry forests to grasslands. These large losses of carbon have important implications for quantifying the effects of invasive species and land cover change on ecosystem carbon storage at landscape and regional scales. Crown Copyright # 2006 Published by Elsevier B.V. All rights reserved.
منابع مشابه
A non-native invasive grass increases soil carbon flux in a Hawaiian tropical dry forest
Non-native plants are invading terrestrial ecosystems across the globe, yet little is known about how invasions impact carbon (C) cycling or how these impacts will be influenced by climate change. We quantified the effect of a non-native C4 grass invasion on soil C pools and fluxes in a Hawaiian tropical dry forest over 2 years in which annual precipitation was average (Year 1) and 60% higher t...
متن کاملSoil properties, labile pools of soil organic carbon and their variations under broadleaf and coniferous plantation in Hyrcanian forest, northern Iran
Afforestation, as a tool to mitigate carbon emission is constrained by available land areain several countries, but Iran has the potential of plantation. In doing so, differences in soilstocks between tree species could give an indication of the effects of future managementchanges. Hence, a better understanding of tree species traits on soil properties is required topredict how changes in ecosy...
متن کاملSpecies loss and aboveground carbon storage in a tropical forest.
Tropical forest biodiversity is declining, but the resulting effects on key ecosystem services, such as carbon storage and sequestration, remain unknown. We assessed the influence of the loss of tropical tree species on carbon storage by simulating 18 possible extinction scenarios within a well-studied 50-hectare tropical forest plot in Panama, which contains 227 tree species. Among extinction ...
متن کاملElevated [CO2] and forest vegetation: more a water issue than a carbon issue?
Studies of responses of forest vegetation to steadily increasing atmospheric concentrations of CO2 have focussed strongly on the potential of trees to absorb extra carbon; the effects of elevated [CO2] on plant–soil water relations via decreased stomatal conductance and increased ambient temperature have received less attention, but may be significant in the long term at the ecosystem level. CO...
متن کاملEffects of Model Choice and Forest Structure on Inventory-Based Estimations of Puerto Rican Forest Biomass
-TO~~~ aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing tree diameter at breast ...
متن کامل